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Abstract

Sparse additive models are families of d-variate functions that have the additive decompo-
sition f∗ =

∑
j∈S f

∗
j , where S is a unknown subset of cardinality s � d. We consider the case

where each component function f∗j lies in a reproducing kernel Hilbert space, and analyze a
simple kernel-based convex program for estimating the unknown function f∗. Working within
a high-dimensional framework that allows both the dimension d and sparsity s to scale, we
derive convergence rates in the L2(P) and L2(Pn) norms. These rates consist of two terms: a
subset selection term of the order s log d

n , corresponding to the difficulty of finding the unknown
s-sized subset, and an estimation error term of the order s ν2n, where ν2n is the optimal rate for
estimating an univariate function within the RKHS. We complement these achievable results by
deriving minimax lower bounds on the L2(P) error, thereby showing that our method is optimal
up to constant factors for sub-linear sparsity s = o(d). Thus, we obtain optimal minimax rates
for many interesting classes of sparse additive models, including polynomials, splines, finite-rank
kernel classes, as well as Sobolev smoothness classes.

1 Introduction

The past decade has witnessed a flurry of research on sparsity constraints in statistical models.
Sparsity is an attractive assumption for both practical and theoretical reasons: it leads to more
interpretable models, reduces computational cost, and allows for model identifiability even under
high-dimensional scaling, where the dimension d exceeds the sample size n. While a large body
of work has focused on sparse linear models, many applications call for the additional flexibility
provided by non-parametric models. In the general setting, a non-parametric regression model
takes the form y = f∗(x1, . . . , xd) + w, where f : Rd → R is the unknown regression function,
and w is scalar observation noise. Unfortunately, this general non-parametric model is known to
suffer severely from the so-called “curse of dimensionality”, in that for most natural function classes
(e.g., twice differentiable functions), the sample size n required to achieve any given error grows
exponentially in the dimension d.

Given this curse of dimensionality, it is essential to further limit the complexity of possible
functions f∗. One attractive candidate are the class of additive non-parametric models [15], in
which the function f∗ has an additive decomposition of the form

f∗(x1, x2, . . . , xd) =

d∑
j=1

f∗j (xj), (1)
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where each component function f∗j is univariate. Given this decoupling, this function class no
longer suffers from the exponential explosion in sample size of the general non-parametric model.
Nonetheless, one still requires a sample size n� d for consistent estimation; note that this is true
even for the linear model, which is a special case of equation (1).

A natural extension is the class of sparse additive models, in which the unknown regression
function is assumed to have a decomposition of the form

f∗(x1, x2 . . . , xd) =
∑
j∈S

f∗j (xj), (2)

where S ⊆ {1, 2, . . . , d} is some unknown subset of cardinality |S| = s. Of primary interest is the
case when the decomposition is genuinely sparse, so that s � d. To the best of our knowledge,
this model class was first introduced in Lin and Zhang [21], and has since been studied by various
researchers (e.g., [17, 23, 28, 37]). Note that the sparse additive model (2) is a natural generalization
of the sparse linear model, to which it reduces when each univariate function is constrained to be
linear.

In past work, several groups have proposed computationally efficient methods for estimating
sparse additive models (2). Just as `1-based relaxations such as the Lasso have desirable properties
for sparse parametric models, more general `1-based approaches have proven to be successful in
this setting. Lin and Zhang [21] proposed the COSSO method, which extends the Lasso to cases
where the component functions f∗j lie in a reproducing kernel Hilbert space (RKHS); see also
Yuan [37] for a similar extension of the non-negative garrote [7]. Bach [3] analyzes a closely related
method for the RKHS setting, in which least-squares loss is penalized by an `1-sum of Hilbert
norms, and establishes consistency results in the classical (fixed d) setting. Other related `1-based
methods have been proposed in independent work by Koltchinskii and Yuan [17], Ravikumar et
al. [28] and Meier et al. [23], and analyzed under high-dimensional scaling. As we describe in more
detail in Section 3.3, each of the above papers establish consistency and convergence rates for the
prediction error under certain conditions on the covariates as well as the sparsity s and dimension
d. However, it is not clear whether the rates obtained in these papers are sharp for the given
methods, nor whether the rates are minimax-optimal.

This paper makes two main contributions to this on-going line of research. Our first contribution
is to analyze a simple polynomial-time method for estimating sparse additive models and provide
upper bounds on the error in both the L2(Pn) and L2(P) norms. Our method is based on a
combination of least-squares loss with two `1-based sparsity penalty terms, one corresponding to
an `1/L

2(Pn) norm and the other an `1/‖ · ‖H norm. This combination yields a second-order cone
program, for which solutions can be computed in polynomial time using interior-point methods
(see §4, 11 in Boyd and Vandenberghe [6] for details). Although closely related to the methods
considered in past work [3, 17, 23, 28], our estimator differs in the particular form of regularization,
and we suspect that these differences are important in obtaining optimal convergence rates. Our
first main result (Theorem 1) shows that that with high probability, the error of our procedure,
in either the squared L2(Pn) or L2(P) norms, is bounded by O

( s log d
n + sν2

n

)
. Each of these two

terms has a natural interpretation. The quantity s log d
n is a subset selection term, which reflects

the difficulty of extracting the s-sized subset of active functions from the total d. On the other
hand, the quantity ν2

n corresponds to the optimal rate for estimating a single univariate function, so
that sν2

n corresponds to the s-dimensional estimation error associated with estimating s univariate
functions. This latter term depends on the sparsity s but not on the ambient dimension d. In order
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to illustrate these rates more concretely, we discuss two particular consequences of Theorem 1.
First, Corollary 1 applies to parametric function classes and m-rank kernel classes, where ν2

n ∼ m
n .

Second, Corollary 2 applies to various types of non-parametric classes, among them Sobolev spaces,
where ν2

n ∼ n−2α/(2α+1), for some α > 1/2.

Our second contribution is complementary in nature, in that it establishes lower bounds that
hold uniformly over all algorithms. These minimax lower bounds, stated in Theorem 2, are specified
in terms of the metric entropy of the underlying univariate function classes. For both finite-rank
kernel classes and Sobolev-type classes, these lower bounds match our achievable results, as stated
in Corollaries 1 and 2, up to constant factors in the regime of sub-linear sparsity (s = o(d)). Thus,
for these function classes, we have a sharp characterization of the associated minimax rates. The
proofs of these results are based on characterizing the packing entropies of the class of sparse
additive models, combined with the use of the Fano method.

The lower bounds derived in this paper initially appeared in the Proceedings of the NIPS Con-
ference (December 2009). As we were completing this write-up, we became aware of concurrent
work by Koltchinskii and Yuan [18] (hereafter KY) that analyzes essentially the same estimator as
that used to prove upper bounds in this paper. As with our analysis, they assume that the unit ball
of each univariate Hilbert class Hj , for j = 1, . . . , d, is bounded. Under this assumption, they derive
a result (Theorem 3 in their paper) that contains the two terms involved in our Theorem 1, but also
includes additional pre-factors that depend on a global bound on the function class—that is, the
quantity C(Fd,s) = supf∈Fd,s ‖f‖∞, where Fd,s is the class of s-sparse additive models in d dimen-
sions. Our result (Theorem 1 in our paper) requires only that each univariate function is bounded,
which is much less restrictive than global boundedness. If the quantity C(Fd,s) remains bounded
independently of the dimension d and sparsity s, then their result matches our rate up to constant
factors. On the other hand, if C(Fd,s) scales with (d, s), then our bound, which has no dependence
on this quantity, is tighter. It is worth noting that the condition C(Fd,s) = O(1)—an assumption
that might seem innocuous at first sight—can be fairly restrictive for sparse additive models under
the high-dimensional scaling (d, s)→ +∞. If a global boundedness condition is imposed, the rates
are not minimax-optimal in general—for instance, see Example 1 in Section 3.3. In addition to
global boundedness, there are other differences between the two papers. For instance, they analyze
a slightly more general class of quadratic-type losses, as opposed to the least-squares loss considered
here, and their analysis involves directly imposing RIP conditions on fixed design matrices, whereas
we consider the case of random design with independent co-ordinates (although our results hold
albeit with slightly worse constants if we impose RIP conditions instead of independence).

The remainder of the paper is organized as follows. In Section 2, we provide background on
kernel spaces and the class of sparse additive models considered in this paper. Section 3 is devoted
to the statement of our main results and discussion of their consequences; it includes description of
our method, the convergence rates that it achieves, and a matching set of minimax lower bounds.
Section 4 is devoted the proofs of our upper and lower bounds, presented in Sections 4.1 and
Section 4.2 respectively, with the more technical details deferred to the Appendices. We conclude
with a discussion in Section 5.

2 Background and problem set-up

We begin with some background on reproducing kernel Hilbert spaces, before providing a precise
definition of the class of sparse additive models studied in this paper.
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2.1 Reproducing kernel Hilbert spaces

Given a subset X ⊂ R and a probability measure Q on X , we consider a Hilbert space H ⊂ L2(Q),
meaning a family of functions g : X → R, with ‖g‖L2(Q) < ∞, and an associated inner product
〈·, ·〉H under which H is complete. The space H is a reproducing kernel Hilbert space (RKHS) if
there exists a symmetric function K : X × X → R+ such that: (a) for each x ∈ X , the function
K(·, x) belongs to the Hilbert spaceH, and (b) we have the reproducing relation f(x) = 〈f, K(·, x)〉H
for all f ∈ H. Any such kernel function must be positive semidefinite; under suitable regularity
conditions, Mercer’s theorem [25] guarantees that the kernel has an eigen-expansion of the form

K(x, x′) =
∞∑
`=1

µ`φ`(x)φ`(x
′), (3)

where µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, and {φj}∞j=1 are the

associated eigenfunctions, taken to be orthonormal in L2(Q). The decay rate of these eigenvalues
will play a crucial role in our analysis, since they ultimately determine the rate νn for the univariate
RKHS’s in our function classes.

Since the eigenfunctions {φ`}∞`=1 form an orthonormal basis, any function f ∈ H has an ex-
pansion of the f(x) =

∑∞
`=1 a`φ`(x), where a` = 〈f, φ`〉L2(Q) =

∫
X f(x)φ`(x) dQ(x) are (gen-

eralized) Fourier coefficients. Associated with any two functions in H—say f =
∑∞

`=1 a`φ` and
g =

∑∞
`=1 b`φ`—are two distinct inner products. The first is the usual inner product in the space

L2(Q)—namely, 〈f, g〉L2(Q) : =
∫
X f(x)g(x) dQ(x). By Parseval’s theorem, it has an equivalent rep-

resentation in terms of the expansion coefficients—namely

〈f, g〉L2(P) =
∞∑
`=1

a`b`.

The second inner product, denoted 〈f, g〉H, is the one that defines the Hilbert space; it can be
written in terms of the kernel eigenvalues and generalized Fourier coefficients as

〈f, g〉H =
∞∑
`=1

a`b`
µ`.

For more background on reproducing kernel Hilbert spaces, we refer the reader to various standard
references [2, 29, 30, 34, 12].

2.2 Sparse additive models over RKHS

For each j = 1, . . . , d, let Hj ⊂ L2(Q) be a reproducing kernel Hilbert space of univariate functions
on the domain X . Without loss of generality (by re-centering the functions as needed), we may
assume that

E[fj(x)] =

∫
X
fj(x)dQ(x) = 0 for all fj ∈ Hj ,

and for each j = 1, 2, . . . , d. For a given subset S ⊂ {1, 2, . . . , d}, we define

H(S) : =
{
f =

∑
j∈S

fj | fj ∈ Hj , and ‖fj‖Hj ≤ 1 ∀ j ∈ S
}
, (4)
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corresponding to the class of functions f : X d → R that decompose as sums of univariate functions
on co-ordinates lying within the set S. Note that H(S) is also (a subset of) a reproducing kernel
Hilbert space, in particular with the norm

‖f‖2H(S) =
∑
j∈S
‖fj‖2Hj ,

where ‖ · ‖Hj denotes the norm on the univariate Hilbert space Hj . Finally, for a cardinality
s ∈ {1, 2, . . . , bd/2c}, we define the function class

Fd,s,H : =
⋃

S⊂{1,2,...,d}
|S|=s

H(S). (5)

To ease notation, we frequently adopt the shorthand F = Fd,s,H, but the reader should recall that
F depends on the choice of Hilbert spaces {Hj}dj=1, and moreover, that we are actually studying a
sequence of function classes indexed by (d, s).

Now let P = Qd denote the product measure on the space X d ⊆ Rd. Given an arbitrary f∗ ∈ F ,
we consider the observation model

yi = f∗(xi) + wi, for i = 1, 2, . . . , n, (6)

where {wi}ni=1 is an i.i.d. sequence of standard normal variates, and {xi}ni=1 is a sequence of design
points in Rd, sampled in an i.i.d. manner from P.

Given an estimate f̂ , our goal is to bound the error f̂−f∗ under two norms. The first is the usual
L2(P) norm on the space F ; given the product structure of P and the additive nature of any f ∈ F ,
it has the additive decomposition ‖f‖2L2(P) =

∑d
j=1 ‖fj‖2L2(Q). In addition, we consider the error in

the empirical L2(Pn)-norm defined by the sample {xi}ni=1, defined as ‖f‖2L2(Pn) : = 1
n

∑n
i=1 f

2(xi).

Unlike the L2(P) norm, this norm does not decouple across the dimensions, but part of our analysis
will establish an approximate form of such decoupling. For shorthand, we frequently use the
notation ‖f‖2 = ‖f‖L2(P) and ‖f‖n = ‖f‖L2(Pn) for a d-variate function f ∈ F . With a minor
abuse of notation, for a univariate function fj ∈ Hj , we also use the shorthands ‖fj‖2 = ‖fj‖L2(Q)

and ‖fj‖n = ‖f‖L2(Qn).

3 Main results and their consequences

This section is devoted to the statement of our main results, and discussion of some of their
consequences. We begin in Section 3.1 by describing a regularized M -estimator for sparse additive
models, and we state our convergence results for this estimator in Section 3.2. We illustrate its
convergence rates for various concrete instances of kernel classes. In Section 3.3, we provide a
detailed comparison between our results to past and concurrent work, including discussion of the
effect of global boundedness conditions on optimal rates. Finally, in Section 3.4, we state minimax
lower bounds on the L2(P) error, which establish the optimality of our procedure.
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3.1 A regularized M-estimator for sparse additive models

For any function of the form f =
∑d

j=1 fj , the (L2(Qn), 1) and (H, 1)-norms are given by

‖f‖n,1 : =
d∑
j=1

‖fj‖n, and ‖f‖H,1 : =
d∑
j=1

‖fj‖H, (7)

respectively. Using this notation, we define the cost functional

L(f) =
1

2n

n∑
i=1

(
yi − f(xi)

)2
+ λn‖f‖n,1 + ρn‖f‖H,1. (8)

The cost functional L(f) is least-squares loss with a sparsity penalty ‖f‖n,1 and a smoothness
penalty ‖f‖H,1. Here (λn, ρn) are a pair of positive regularization parameters whose choice will be
specified by our theory. Given this cost functional, we then consider the M -estimator

f̂ ∈ arg min
f
L(f) subject to f =

∑d
j=1 fj and ‖fj‖H ≤ 1 for all j = 1, 2, . . . , d. (9)

As stated, the problem (9) is infinite-dimensional in nature, since it involves optimization over
Hilbert spaces. However, an attractive feature of this M -estimator is that, as a straightforward
consequence of the representer theorem [16, 30], it can be reduced to an equivalent convex program
in Rn×Rd. In particular, for each j = 1, 2, . . . , d, let Kj denote the kernel function for co-ordinate
j. Using the notation xi = (xi1, xi2, . . . , xid) for the ith sample, we define the collection of empirical
kernel matrices Kj ∈ Rn×n, with entries Kj

i` = Kj(xij , x`j). By the representer theorem, any

solution f̂ to the variational problem (9) can be written in the form

f̂(z1, . . . , zd) =
n∑
i=1

d∑
j=1

α̂ijKj(zj , xij),

for a collection of weights
{
α̂j ∈ Rn, j = 1, . . . , d

}
. The optimal weights are obtained by solving

the convex program

(α̂1, . . . , α̂d) = arg min
αj∈Rn

αTj K
jαj≤1

{
1

2n
‖y −

d∑
j=1

Kjαj‖22 + λn

d∑
j=1

√
1

n
‖Kjαj‖22 + ρn

d∑
j=1

√
αTj K

jαj

}
.

(10)

This problem is a second-order cone program (SOCP), and there are various algorithms for solving
it to arbitrary accuracy in time polynomial in (n, d), among them interior point methods (e.g., see
§11 in the book [6]).

Various combinations of sparsity and smoothness penalties—all slightly different than the ap-
proach proposed here—have been used in in past work on sparse additive models. For instance,
the method of Ravikumar et. al [28] is based least-squares loss regularized with single sparsity con-
straint, and separate smoothness constraints for each univariate function. They solve the resulting
optimization problem using a back-fitting procedure. Koltchinskii and Yuan [17] develop a method
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based on least-squares loss combined with a single penalty term
∑d

j=1 ‖fj‖H. Their method also
leads to an SOCP if H is a reproducing kernel Hilbert space, but differs from the program (10) in
lacking the additional sparsity penalties. Meier et. al [23] analyzed least-squares regularized with a

penalty term of the form
∑d

j=1

√
λ1‖fj‖2n + λ2‖fj‖2H, where λ1 and λ2 are a pair of regularization

parameters. In their method, λ1 controls the sparsity while λ2 controls the smoothness. If H is an
RKHS, the method in Meier et. al [23] reduces to an ordinary group Lasso problem on a different
set of variables, which is another type of SOCP.

3.2 Convergence rates

We now state a result that provides convergence rates for the estimator (9), or equivalently (10).
To simplify presentation, we state our result in the special case that the univariate Hilbert space
Hj , j = 1, . . . , d are all identical, denoted byH. The analysis and results extend in a straightforward
manner to the general setting of distinct univariate Hilbert spaces, as we discuss following the
statement of Theorem 1.

Let µ1 ≥ µ2 ≥ . . . ≥ 0 denote the non-negative eigenvalues of the kernel operator defining the
univariate Hilbert space H, as defined in equation (3), and define the function

Rn(t) : =
1√
n

[ ∞∑
`=1

min{t2, µ`}
]1/2

. (11)

For a constant κ0 > 0 to be chosen, let νn > 0 be the smallest positive solution to the inequality

ν2
n ≥ κ0 Rn(νn). (12)

We refer to νn as the critical univariate rate, as it is the minimax-optimal rate for L2(P)-estimation
of a single univariate function in the Hilbert space H (e.g., [24, 32]). This quantity will be referred
to throughout the remainder of the paper.

Our choices of regularization parameters are specified in terms of the quantity

γn : = κ1 max
{
νn,

√
log d

n

}
, (13)

where κ1 > 0 is a sufficiently large constant, independent of the sample size and function classes.
We assume that each function within the unit ball of the univariate Hilbert space is bounded—that
is, for each j = 1, . . . , d

‖fj‖∞ ≤ 1 for all ‖fj‖H ≤ 1. (14)

This condition is fairly mild, and is implied by having a bounded univariate kernel function, for
instance. These types of boundedness condition are quite standard for proving upper bounds on
rates of convergence for non-parametric least squares in the univariate case d = 1 (see e.g. [31, 32]).
However, note that we do not assume that the functions f =

∑
j∈S fj in F are uniformly bounded

independently of (d, s).

The following result applies to any class Fd,s,H of sparse additive models based on the univariate
Hilbert space satisfying condition (14), and to the estimator (9) based on n i.i.d. samples (xi, yi)

n
i=1

from the observation model (6).
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Theorem 1. Let f̂ be any minimizer of the convex program (9) with regularization parame-
ters λn = c3γn and ρn = c4γ

2
n for sufficiently large constants c3 and c4. Then provided that

nγ2
n = Ω(log(1/γn)), there are universal constants (C, c1, c2) such that

P
[
‖f̂ − f∗‖2n ≥ C

{s log d

n
+ sν2

n

}]
≤ c1 exp(−c2nγ

2
n). (15)

Remarks: (a) The technical condition nγ2
n = Ω(log(1/γn)) is quite mild, and satisfied in most

cases of interest, among them the kernels considered below in Corollaries 1 and 2.

(b) Although Theorem 1 is stated for the empirical L2(Pn) error, the same bound holds for the
error ‖ΠF (f̂)− f∗‖2, where ΠF (f̂) is the projection of f̂ onto the class F under the L2(Pn)-norm.
Although we suspect that the error ‖f̂ −f∗‖2 satisfies the same bound (15), our current techniques
only allow us to control the projected function ΠF (f̂). If we imposed a global boundedness con-
dition, then it would follow that ‖f̂ − f∗‖2 has the same scaling as ‖f̂ − f∗‖n under the given
conditions. It remains an open question if one can directly establish such a bound without a global
boundedness condition.

(c) For clarity, we have stated our result in the case where the univariate Hilbert spaceH is identical
across all co-ordinates. However, our proof extends with only notational changes to the general
setting, in which each co-ordinate j is endowed with a (possibly distinct) Hilbert space Hj . In this

case, the M -estimator returns a function f̂ such that (with high probability)

‖f̂ − f∗‖2n
s log d

n
+
∑
j∈S

ν2
n,j ,

where νn,j is the critical univariate rate associated with the Hilbert space Hj , and S is the subset
on which f∗ is supported.

(d) As described in the introduction, the rate s log d
n +sν2

n may be interpreted as the sum of a subset

selection term ( s log d
n ) and an s-dimensional estimation term (sν2

n). Note that the subset selection

term ( s log d
n ) is independent of the choice of Hilbert space H whereas the s-dimensional estimation

term is independent of the ambient dimension d. Depending on the scaling of the triple (n, d, s) and
the smoothness of the univariate RKHS H, either the subset selection term or function estimation
term may dominate. In general, if log d

n = o(ν2
n), the s-dimensional estimation term dominates, and

vice versa otherwise. At the boundary, the scalings of the two terms are equivalent.

Theorem 1 has a number of corollaries, obtained by specifying particular choices of kernels.
First, we discuss m-rank operators, meaning that the kernel function K can be expanded in terms
of m eigenfunctions. This class includes linear functions, polynomial functions, as well as any
function class based on finite dictionary expansions.

Corollary 1. Under the same conditions as Theorem 1, consider an univariate kernel with finite
rank m. Then any solution f̂ to the problem (9) satisfies

P
[

max
{
‖f̂ − f∗‖2n, ‖ΠF (f̂)− f∗‖22

}
≥ C

{s log d

n
+ s

m

n

}]
≤ c1 exp

(
− c2(m+ log d)

)
. (16)
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Proof. It suffices to show that the critical univariate rate (12) satisfies the scaling ν2
n = O(m/n).

For a finite-rank kernel and any t > 0, we have

Rn(t) =
1√
n

√√√√ m∑
j=1

min{t2, µj} ≤ t

√
m

n
,

from which the claim follows by the definition (12).

Next, we present a result for the RKHS’s with infinitely many eigenvalues, but whose eigenvalues
decay at a rate µ` ' (1/`)2α for some parameter α > 1/2. Among other examples, this type of
scaling covers the case of Sobolev spaces, say consisting of functions with α derivatives (e.g., [5, 13]).

Corollary 2. Under the same conditions as Theorem 1, consider an univariate kernel with eigen-
value decay µ` ' (1/`)2α for some α > 1/2. Then the kernel estimator defined in (9) satisfies

P
[

max
{
‖f̂ − f∗‖2n, ‖ΠF (f̂)− f∗‖22

}
≥ C

{s log d

n
+ s
( 1

n

) 2α
2α+1

}]
≤ c1 exp

(
− c2(n

1
2α+1 + log d)

)
.

(17)

Proof. As in the previous corollary, we need to compute the critical univariate rate νn. Given the

assumption of polynomial eigenvalue decay, a truncation argument shows that Rn(t) = O
(
t1−

1
2α√
n

)
.

Consequently, the critical univariate rate (12) satisfies the scaling ν2
n � ν

1− 1
2α

n /
√
n, or equivalently,

ν2
n � n

− 2α
2α+1 .

3.3 Comparison with other work

It is interesting to compare these convergence rates in L2(Pn) error with those established in past
work [17, 23, 28]. Ravikumar et. al [28] show that any solution to their back-fitting method is con-
sistent in terms of mean-squared error risk (see Theorem 3 in their paper). However, their analysis
does not appear to track s explicitly, and assumes that d is sufficiently large to ensure that the
subset selection term dominates, so the result is not directly comparable. The method of Koltchin-
skii and Yuan [17] is based regularizing the least-squares loss with the (H, 1)-norm penalty—that
is,
∑d

j=1 ‖fj‖H; Theorem 2 in their paper presents a rate that captures the decomposition into two
terms, which can be interpreted as related to subset selection and s-dimensional estimation term.
In quantitative terms, however, their rates are looser than those given here; in particular, their

bound includes a term of the order s3 log d
n , which is larger than the bound in Theorem 1. For their

algorithm, Meier et al. [23] establish a convergence rate of the form O(s( log d
n )

2α
2α+1

)
in the case of

α-smooth Sobolev spaces (see Theorem 1 in their paper). This result is sub-optimal compared to
the optimal rate proven in Theorem 2(b) in regimes when d is large.1 In all of the above-mentioned
methods, it is unclear whether or not sharper analysis would yield better rates.

Finally, as discussed previously in the introduction, the concurrent work of Koltchinskii and
Yuan [18] analyzes a method that is essentially the same as our M -estimator (9). In terms of rates

1More precisely, we either have log d
n

< ( log d
n

)
2α

2α+1 , when subset selection term dominates, or

( 1
n
)

2α
2α+1 < ( log d

n
)

2α
2α+1 , when the s-dimensional estimation term dominates.

9



obtained, they establish a convergence rate based on two terms as in Theorem 1, but with a pre-
factor that depends on the global bound C(Fd,s) = supf∈Fd,s ‖f‖∞. (Recall that functions f ∈ Fd,s
consist of sums of the form f =

∑
j∈S fj , where S has cardinality s.) In contrast, our pre-factor

contains no dependence on this global quantity. Thus, if one assumes that C(Fd,s) = O(1) even
as (d, s) scale, then the rates obtained are the same up to constant factors. However, making such
an assumption in the high-dimensional setting can be quite restrictive. Indeed, as shown by the
following example, it can lead to quite “small” function classes Fd,s for which much faster rates
can be achieved using different methods.

Example 1 (Restrictiveness of assuming global boundedness). Suppose that each covariate xj is
uniform on [−1,+1], and consider the class of univariate linear functions

H : = {gα : R→ R | α ∈ R}, where gα(xj) = αxj .

Thus, our function class F = Fd,s consists of sparse linear functions of the form

fβ(x) =
∑
j∈S

gβj (x) =
∑
j∈S

βjxj .

Since ‖gβj‖∞ = |βj |, boundedness of the univariate classes amounts to the requirement |βj | ≤ 1.
Moreover, for any function fβ ∈ F , note that we have ‖fβ‖∞ = ‖β‖1. Consequently, impos-
ing the global boundedness condition C(F) = supfβ∈F ‖fβ‖∞ ≤ R is equivalent to the con-
straint ‖β‖1 ≤ R, so that the problem reduces to ordinary linear regression over the `1-ball
B1(R) = {β ∈ Rd | ‖β‖1 ≤ R}. For this problem, it is known [8, 27] that the Lasso will produce an
estimate such that

‖β̂ − β∗‖2n R

√
log d

n
(18)

with high probability.2 This rate is independent of s because the global boundedness condition
restricts us to a `1-ball with constant radius R; indeed, the rate (18) is minimax-optimal over the
set B1(R) (e.g., see the paper [27]). In contrast, the error bound

‖β̂ − β∗‖2n
s

n
+
s log d

n
(19)

does depend on s and so can be substantially weaker, depending on the choice of s. For exam-
ple, taking s = d

√
de, the optimal rate (18) scales logarithmically in d whereas the scaling of the

sub-optimal rate (19) is exponentially larger. This construction shows that the rates derived under
global boundedness conditions are not minimax-optimal in general.

Returning to the setting of a general RKHS H(S), a global boundedness condition imposes an
upper bound on the Hilbert norm radius of functions in Fs,d = ∪|S|=sH(S). Indeed, for a given
subset S, let ρ > 0 be the largest radius such that {‖f‖H(S) ≤ ρ} ⊆ F . Then for any x ∈ X , we

2Here we use to denote inequality up to constant factors depending on variances of the design and noise. This is
the optimal rate for regression over `1-balls, as opposed to `0-balls.
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have

sup
f∈F
|f(x)| ≥ sup

‖f‖H(S)≤ρ
|f(x)|

= sup
‖f‖H(S)≤ρ

|〈f, K̃(·, x)〉H(S)|

= ρ ‖K̃(·, x)‖H(S)

= ρ

√
K̃(x, x),

where K̃ denotes the kernel associated with H(S). By definition of the Hilbert space H(S), we have
K̃(x, x) =

∑
j∈S K(xj , xj), where K(xj , xj) is the univariate kernel over co-ordinate j. Consequently,

we have the lower bound

ρ sup
x∈X |S|

‖K̃(·, x)‖H(S) = ρ sup
x∈X |S|

√∑
j∈S

K(xj , xj)

≥ ρ
√
s sup
x1∈X

√
K(x1, x1),

showing that we require the bound ρ = O(1/
√
s) in order to ensure C(Fs,d) = O(1).

3.4 Minimax lower bounds

In this section, we provide minimax lower bounds in L2(P) error so as to complement the achiev-
ability results derived in Theorem 1. Given the function class F , the minimax L2(P)-error is given
by

MP(F) : = inf
f̂n

sup
f∗∈F

‖f̂n − f∗‖22, (20)

where the infimum is taken over all measureable functions of n samples {(yi, xi)}ni=1. As defined,
this minimax error is a random variable, and our goal is to obtain a lower bound in probability.

Central to our proof of the lower bounds is the metric entropy structure of the univariate
reproducing kernel Hilbert spaces. More precisely, our lower bounds depend on the packing entropy,
defined as follows. Let (G, ρ) be a totally bounded metric space, consisting of a set G and a metric
ρ : G × G → R+. An ε-packing of G is a collection {f1, . . . , fM} ⊂ G such that ρ(f i, f j) ≥ ε for
all i 6= j. The ε-packing number M(ε;G, ρ) is the cardinality of the largest ε-packing. The packing
entropy is the simply the logarithm of the packing number, namely the quantity logM(ε;G, ρ), to
which we also refer as the metric entropy.

With this set-up, we derive explicit minimax lower bounds for two different scalings of the uni-
variate metric entropy.

Logarithmic metric entropy: There exists some m > 0 such that

logM(ε;BH(1), ‖ · ‖2) ' m log(1/ε) for all ε ∈ (0, 1). (21)

Function classes with metric entropy of this type include linear functions (for which m = k),
univariate polynomials of degree k (for which m = k + 1), and more generally, any function space
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with finite VC-dimension [33]. This type of scaling also holds for any RKHS based on a kernel with
rank m (e.g., see [10]), and these finite-rank kernels include both linear and polynomial functions
as special cases.

Polynomial metric entropy There exists some α > 0 such that

logM(ε;BH(1), ‖ · ‖2) ' (1/ε)1/α for all ε ∈ (0, 1). (22)

Various types of Sobolev/Besov classes exhibit this type of metric entropy decay [5, 13]. In fact,
any RKHS in which the kernel eigenvalues decay at a rate j−2α have a metric entropy with this
scaling [9, 10].

We are now equipped to state our lower bounds on the minimax risk (20):

Theorem 2. Given n i.i.d. samples from the sparse additive model (6) with sparsity s ≤ d/4,
there is an universal constant C > 0 such that:

(a) For a univariate class H with logarithmic metric entropy (21) indexed by parameter m, we
have

MP(F) ≥ C

{
s log(d/s)

n
+ s

m

n

}
(23)

with probability greater than 1/2.

(b) For a univariate class H with polynomial metric entropy (22) indexed by α, we have

MP(F) ≥ C

{
s log(d/s)

n
+ s

( 1

n

) 2α
2α+1

}
(24)

with probability greater than 1/2.

The choice of stating bounds that hold with probability 1/2 is simply a convention often used in
information-theoretic approaches (see, for instance, the papers [14, 35, 36]). We note that analogous
lower bounds can established with probabilities arbitrarily close to one, albeit at the expense of
worse constants. The most important consequence of Theorem 2 is in establishing the minimax-
optimality of the results given in Corollary 1 and 2; in particular, in the regime sub-linear sparsity
(i.e., for which log d = O(log(d/s))), the combination of Theorem 2 with these corollaries identifies
the minimax rates up to constant factors.

4 Proofs

In this section, we provide the proofs of our main results, namely Theorems 1 and 2. For clarity
in presentation, we split the proofs up into a series of lemmas, with the bulk of the more technical
proofs deferred to the appendices. This splitting allows our presentation in the main text to be
relatively streamlined.
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4.1 Proof of Theorem 1

At a high-level, Theorem 1 is based on an appropriate adaptation to the non-parametric setting
of various techniques that have been developed for bounding the error in sparse linear regression
(e.g., [4, 26]). In contrast to the parametric setting (where classical tail bounds are sufficient),
controlling the error terms in this analysis requires more advanced techniques from empirical process
theory. In particular, we make use of concentration theorems for Gaussian and empirical processes
(e.g., [19, 22]) as well as results on the Rademacher complexity of kernel classes [24]. At a high-
level, the proof is based on four technical lemmas. First, Lemma 1 provides an upper bound on
the Gaussian complexity of any function of the form f =

∑d
j=1 fj in terms of the norms ‖ · ‖H,1

and ‖ · ‖n,1 previously defined. Lemma 2 exploits the notion of decomposability [26], as applied
to these norms, in order to show that the error function belongs to a particular cone-shaped set.
Finally, Lemma 3 and 4 establish some relations between the that the L2(P) and L2(Pn) norms of
functions in the class F . The latter lemma involves a truncation argument so as to avoid having
to impose global bounds on the function class.

Throughout the proof, we use C and ci, i = 1, 2, 3, 4 to denote universal constants, independent
of (n, d, s). Note that the precise numerical values of these constants may change from line to
line. We use (κ0, κ1, κ2, κ3) to denote constants, independent of (n, d, s), but whose value is fixed
throughout. To ease notation, we define

δ2
n : = κ2

{s log d

n
+ sν2

n

}
,

where the constant κ2 > 0 is to be chosen. Recall the definitions of νn and γn from equations (12)
and (13) respectively, and note that δn = Θ(

√
sγn). For a subset A ⊆ {1, 2, . . . , d} and an additively

decomposed function f =
∑d

j=1 fj , we adopt the convenient notation

‖fA‖n,1 : =
∑
j∈A
‖fj‖n, and ‖fA‖H,1 : =

∑
j∈A
‖fj‖H. (25)

4.1.1 Establishing a basic inequality

We begin by establishing a basic inequality on the error function ∆̂ : = f̂ − f∗. Since f̂ and f∗ are,
respectively, optimal and feasible for the problem (9), we are guaranteed that L(f̂) ≤ L(f∗), and
hence that the error function ∆̂ satisfies the bound

1

2n

n∑
i=1

(wi − ∆̂(xi))
2 + λn‖f̂‖n,1 + ρn‖f̂‖H,1 ≤

1

2n

n∑
i=1

w2
i + λn‖f∗‖n,1 + ρn‖f∗‖H,1.

Some simple algebra yields the bound

1

2
‖∆̂‖2n ≤

∣∣ 1
n

n∑
i=1

wi∆̂(xi)
∣∣+ λn‖∆̂‖n,1 + ρn‖∆̂‖H,1, (26)

which we refer to as our basic inequality [32].
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4.1.2 Controlling the noise term

The following lemma provides control the term on the right-hand side of inequality (26) by simul-
taneously bounding the Gaussian complexity for univariate function ∆̂j in terms of their ‖.‖n and

‖.‖H norms. In particular, recalling that γn = κ1 max{
√

log d
n , νn}, we have the following lemma.

Lemma 1. For a constant κ3 > 0, define the event

T (γn) : =

{
∀ j = 1, 2, . . . , d,

∣∣ 1
n

n∑
i=1

wi∆̂j(xij)
∣∣ ≤ 2κ3

{
γ2
n ‖∆̂j‖H + γn ‖∆̂j‖n

}}
. (27)

Then under the condition nγ2
n = Ω(log(1/γn)), we have

P(T (γn)) ≥ 1− c1 exp(−c2nγ
2
n). (28)

The proof of this lemma, provided in Appendix A, uses concentration of measure for Lipschitz
functions over Gaussian random variables [19] combined with a peeling argument [1, 32]. The
subset selection term ( s log d

n ) in Theorem 1 arises from taking the maximum over all d components.

4.1.3 Exploiting decomposability

The remainder of our analysis involves conditioning on the event T (γn). Using Lemma 1, on the
event T (γn) we have:

1

2
‖∆̂‖2n ≤ 2κ3γ

2
n‖∆̂‖n,1 + 2κ3γ

2
n‖∆̂‖H,1 + λn‖∆̂‖n,1 + ρn‖∆̂‖H,1.

Recalling that S denotes the true support of the unknown function f∗, note that we have ‖∆̂‖n,1 =

‖∆̂S‖n,1 + ‖∆̂Sc‖n,1, with a similar decomposition for ‖∆̂‖H,1. The next lemma shows that con-

ditioned on T (γn), the quantities ‖∆̂‖H,1 and ‖∆̂‖n,1 are not significantly larger than the corre-

sponding norms as applied to the function ∆̂S .

Lemma 2. Conditioned on T (γn), and with the choices λn ≥ 4κ3γn and ρn ≥ 4κ3γ
2
n, we have

λn‖∆̂‖n,1 + ρn‖∆̂‖H,1 ≤ 4λn‖∆̂S‖n,1 + 4ρn‖∆̂S‖H,1 (29)

The proof of this lemma, provided in Appendix B, is based on the decomposability [26] of the ‖·‖H,1
and ‖ · ‖n,1 norms. This lemma allows us to exploit the sparsity assumption, since in conjunction
with Lemma 1, we have now bounded the right-hand side of the basic inequality (26) in terms
involving only ∆̂S . In particular, still conditioning on T (γn) and applying Lemma 2, we obtain

‖∆̂‖2n ≤ C
{
γn‖∆̂S‖n,1 + γ2

n‖∆̂S‖H,1 + λn‖∆̂S‖n,1 + ρn‖∆̂S‖H,1
}

≤ C
{
γn‖∆̂S‖n,1 + γ2

n‖∆̂S‖H,1
}
,

where3 we have recalled our choices λn = Θ(γn) and ρn = Θ(γ2
n). Finally, since both f̂j and f∗j

belong to BH(1), we have

‖∆̂j‖H ≤ ‖f̂j‖H + ‖f∗j ‖H ≤ 2,

which implies that ‖∆̂S‖H,1 ≤ 2s, and hence

‖∆̂‖2n ≤ C
{
γn‖∆̂S‖n,1 + sγ2

n

}
. (30)

3In this step and elsewhere, the reader should be reminded of our convention that the numerical value of C can
change from line to line.
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4.1.4 Relating the L2(Pn) and L2(P) norms

It remains to control the term ‖∆̂S‖n,1 =
∑

j∈S ‖∆̂j‖n. Ideally, we would like to upper bound it

by
√
s‖∆̂S‖n. Such an upper bound would follow immediately if it were phrased in terms of the

‖ · ‖2 rather than the ‖ · ‖n norm, but there are additional cross-terms with the empirical norm.
Accordingly, we make use of two lemmas that relate the ‖ · ‖n norm and the population ‖ · ‖2 norms
for functions in F .

In the statements of these results, we adopt the notation g and gj (as opposed to f and fj)
to be clear our results apply to any g ∈ F . We first provide an upper bound on the empirical
norm ‖gj‖n in terms of the associated ‖gj‖2 norm, one that holds uniformly over all components
j = 1, 2, . . . , d.

Lemma 3. For a universal constant C and j = 1, 2, . . . , d, consider the events

Aj(γn) : =
{
‖gj‖n ≤ 4‖gj‖2 + Cγn for all gj ∈ BH(2)

}
, (31)

as well as A(γn) = ∩dj=1Aj(γn). If the univariate Hilbert space H satisfies condition (14), then
there are universal constants (c1, c2) such that

P
[
A(γn)

]
≥ 1− c1 exp(−c2nγ

2
n).

We now define the function class 2F : = {f + f ′ | f, f ′ ∈ F}. Our second lemma guarantees
that the empirical norm ‖ · ‖n of any function in 2F is uniformly lower bounded by the norm ‖ · ‖2.

Lemma 4. Define the event

B(δn) : =

{
‖g‖2n ≥ ‖g‖22/4 for all g ∈ 2F with ‖g‖2 ≥ δn

}
. (32)

If the underlying univariate Hilbert space H satisfies condition (14), then there are universal con-
stants (c1, c2) such that

P[B(δn)] ≥ 1− c1 exp(−c2nδ
2
n).

Lemmas 3 and 4 are proved in Appendices F and D, respectively. Note that while both results
require bounds on the univariate function classes (recall condition (14)), they do not require global
boundedness assumptions—that is, on quantities of the form ‖

∑
j∈S gj‖∞. Typically, we expect

that the ‖ · ‖∞-norms of functions g ∈ F scale with s.

4.1.5 Completing the proof

Using Lemmas 3 and 4, we can complete the proof of Theorem 1. For the remainder of the proof,
let us condition on the events A(γn) and B(δn). Conditioning on the event A(γn), we have

‖∆̂S‖n,1 =
∑
j∈S
‖∆̂j‖n ≤ 4

∑
j∈S
‖∆̂j‖2 + Csγn ≤ 4

√
s‖∆̂S‖2 + Csγn. (33)

Our next step is to upper bound ‖∆̂S‖2 in terms of ‖∆̂S‖n and sγn. We split our analysis into two
cases.
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Case 1: If ‖∆̂S‖2 < δn = Θ(
√
sγn), then combined with the bound (33), we conclude that

‖∆̂S‖n,1 ≤ Csγn. (34)

Case 2: Otherwise, we have ‖∆̂S‖2 ≥ δn. Note that the function ∆̂S =
∑

j∈S ∆̂j belongs to the
class 2F , so that it is covered by the event B(δn). In particular, conditioned on the event B(δn),
we have ‖∆̂S‖2 ≤ 2‖∆̂S‖n. Combined with the bound (33), we conclude that

‖∆̂S‖n,1 ≤ C{
√
s‖∆̂S‖n + sγn

}
. (35)

Note that (disregarding constants) the bound (34) is at least as good as the bound (35);
therefore, in either case, a bound of the form (35) holds. Substituting the inequality (35) in
the bound (30) yields

‖∆̂‖2n ≤ C
{
γn‖∆̂S‖n,1 + sγ2

n

}
≤ C

{√
sγn ‖∆̂S‖n + sγ2

n

}
. (36)

Since ‖∆̂S‖n ≤ ‖∆̂‖n, the bound (36) implies that ‖∆̂‖n ≤ C
√
sγn. This bound is valid conditioned

on the events T (γn), A(γn) and B(δn). Using Lemmas 1, 3 and 4 in conjunction, we obtain

P(T (γn) ∩ A(γn) ∩ B(δn)) ≥ 1− c1 exp
(
− c2nγ

2
n

)
,

thereby showing that ‖f̂ − f∗‖n ≤ C
√
sγn with the claimed probability.

Finally, let us extend the result to the error ‖ΠF (f̂) − f∗‖2, as mentioned in the remarks
following Theorem 1. In order to do so, we exploit Lemma 4. Since the function ΠF (f̂) − f∗

belongs to 2F , we may apply the lemma to it. We conclude that either ‖ΠF (f̂) − f∗‖2 ≤ δn, in
which case we are done, or that, with probability at least 1− c1 exp(−c2nδ

2
n), we have

‖ΠF (f̂)− f∗‖2 ≤ 2‖ΠF (f̂)− f∗‖n
≤ 2
{
‖ΠF (f̂)− f̂‖n + ‖f̂ − f∗‖n

}
where the second step follows by triangle inequality. Now by definition of the projection, since
f∗ ∈ F ⊂ 2F , we must have ‖f̂ − f∗‖n ≥ ‖f̂ −ΠF (f̂)‖n, from which we conclude that

‖ΠF (f̂)− f∗‖2 ≤ 4‖f̂ − f∗‖n,

which completes the proof of Theorem 1.

4.2 Proof of Theorem 2

We now turn to the proof of the minimax lower bounds stated in Theorem 2. For both parts (a)
and (b), the first step is to follow a standard reduction to testing (e.g., [14, 35, 36]) so as to obtain
a lower bound on the minimax error MP(F) in terms of the probability of error in a multi-way
hypothesis testing. We then apply different forms of the Fano inequality [36, 35] in order to lower
bound the probability of error in this testing problem. Obtaining useful bounds requires a precise
characterization of the metric entropy structure of Fd,s,H, as stated in Lemma 5.

16



4.2.1 Reduction to testing

We begin with the reduction to a testing problem. Let {f1, . . . , fN} be a δn-packing of F in the ‖·‖2-
norm, and let Θ be a random variable uniformly distributed over the index set [N ] : = {1, 2, . . . , N}.
Note that we are using N as a shorthand for the packing number M(δn;F , ‖ · ‖2). A standard
argument (e.g., [14, 35, 36]) then yields the lower bound

inf
f̂

sup
f∗∈F

P
[
‖f̂ − f∗‖22 ≥ δ2

n/2
]
≥ inf

Θ̂
P[Θ̂ 6= Θ], (37)

where the infimum on the right-hand side is taken over all estimators Θ̂ that are measurable
functions of the data, and take values in the index set [N ].

Note that P[Θ̂ 6= Θ] corresponds to the error probability in a multi-way hypothesis test, where
the probability is taken over the random choice of Θ, the randomness of the design points Xn

1 : =
{xi}ni=1, and the randomness of the observations Y n

1 : = {yi}ni=1. Our initial analysis is performed
conditionally on the design points, so that the only remaining randomness in the observations Y n

1

comes from the observation noise {wi}ni=1. From Fano’s inequality [11], for any estimator Θ̂, we

have P
[
Θ̂ 6= Θ | Xn

1

]
≥ 1 −

IXn1
(Θ;Y n1 )+log 2

logN , where IXn
1

(Θ;Y n
1 ) denotes the mutual information

between Θ and Y n
1 with Xn

1 fixed. Taking expectations over Xn
1 , we obtain the lower bound

P
[
Θ̂ 6= Θ

]
≥ 1−

EXn
1

[
IXn

1
(Θ;Y n

1 )
]

+ log 2

logN
. (38)

The remainder of the proof consists of constructing appropriate packing sets of F , and obtaining
good upper bounds on the mutual information term in the lower bound (38).

4.2.2 Constructing appropriate packings

We begin with results on packing numbers. Recall that logM(δ;F , ‖ · ‖2) denotes the δ-packing
entropy of F in the ‖ · ‖2 norm.

Lemma 5. (a) For all δ ∈ (0, 1) and s ≤ d/4, we have

logM(δ;F , ‖ · ‖2) = O
(
s logM(

δ√
s

;BH(1), ‖ · ‖2) + s log
d

s

)
. (39)

(b) For a Hilbert class with logarithmic metric entropy (21) and such that ‖f‖2 ≤ ‖f‖H, there
exists set {f1, . . . , fM} with logM ≥ C

{
s log(d/s) + sm

}
, and

δ ≤ ‖fk − fm‖2 ≤ 8δ for all k 6= m ∈ {1, 2, . . . ,M}. (40)

The proof, provided in Appendix E, is combinatorial in nature. We now turn to the proofs of parts
(a) and (b) of Theorem 2.

4.2.3 Proof of Theorem 2(a)

In order to prove this claim, it remains to exploit Lemma 5 in an appropriate way, and to upper
bound the resulting mutual information. For the latter step, we make use of the generalized Fano
approach (e.g., [36]).
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From Lemma 5, we can find a set {f1, . . . , fM} that is a δ-packing of F in `2-norm, and
such that ‖fk − f `‖2 ≤ 8δ for all k, ` ∈ [M ]. For k = 1, . . . ,M , let Qk denote the conditional
distribution of Y n

1 conditioned on Xn
1 and the event {Θ = k}, and let D(Qk ‖Q`) denote the

Kullback-Leibler divergence. From the convexity of mutual information [11], we have the upper
bound IXn

1
(Θ;Y n

1 ) ≤ 1

(M2 )

∑M
k,`=1D(Qk ‖Q`). Given our linear observation model (6), we have

D(Qk ‖Q`) =
1

2σ2

n∑
i=1

(
fk(xi)− f `(xi)

)2
=

n ‖fk − f `‖2n
2

,

and hence

EXn
1

[
IXn

1
(Y n

1 ; Θ)
]
≤ n

2

1(
M
2

) M∑
k,`=1

EXn
1

[‖fk − f `‖2n] =
n

2

1(
M
2

) M∑
k,`=1

‖fk − f `‖22.

Since our packing satisfies ‖fk − f `‖22 ≤ 64δ2, we conclude that

EXn
1

[
IXn

1
(Y n

1 ; Θ)
]
≤ 32nδ2.

From the Fano bound (38), for any δ > 0 such that 32nδ2+log 2
logM < 1

4 , then we are guaranteed that

P[Θ̂ 6= Θ] ≥ 3
4 . From Lemma 5(b), our packing set satisfies logM ≥ C

{
sm + s log(d/s)

}
, so that

so that the choice δ2 = C ′
{
sm
n + s log(d/s)

n

}
, for a suitably small C ′ > 0, can be used to guarantee

the error bound P[Θ̂ 6= Θ] ≥ 3
4 .

4.2.4 Proof of Theorem 2(b)

In this case, we use an upper bounding technique due to Yang and Barron [35] in order to upper
bound the mutual information. Although the argument is essentially the same, it does not fol-
low verbatim from their claims—in particular, there are some slight differences due to our initial
conditioning—so that we provide the details here. By definition of the mutual information, we have

IXn
1

(Θ;Y n
1 ) =

1

M

M∑
k=1

D(Qk ‖PY ),

where Qk denotes the conditional distribution of Y n
1 given Θ = k and still with Xn

1 fixed, whereas
PY denotes the marginal distribution of PY . Now let {g1, . . . , gN} be an ε-cover of F in the ‖ · ‖2
norm, for a tolerance ε to be chosen. As argued in Yang and Barron [35], we have

IXn
1

(Θ;Y n
1 ) =

1

M

M∑
j=1

D(Qj ‖PY ) ≤ D(Qk ‖ 1

N

N∑
k=1

Pk),

where P` denotes the conditional distribution of Y n
1 given g` and Xn

1 . For each `, let us choose
`∗(k) ∈ arg min`=1,...,N ‖g` − fk‖2. We then have the upper bound

IXn
1

(Θ;Y n
1 ) ≤ 1

M

M∑
k=1

{
logN +

n

2
‖g`∗(k) − fk‖2n

}
.
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Taking expectations over Xn
1 , we obtain

EXn
1

[IXn
1

(Θ;Y n
1 )] ≤ 1

M

M∑
k=1

{
logN +

n

2
EXn

1
[‖g`∗(k) − fk‖2n]

}
≤ logN +

n

2
ε2,

where the final inequality follows from the choice of our covering set.

From this point, we can follow the same steps as Yang and Barron [35]. The polynomial
scaling (22) of the metric entropy guarantees that their conditions are satisfied, and we conclude
that the minimax error is lower bounded any δn > 0 such that

nδ2
n logN(δn;F , ‖ · ‖2).

From Lemma 5 and the assumed scaling (22), it is equivalent to solve the equation

nδ2
n s log(d/s) + s(

√
s/δn)1/α,

from which some algebra yields δ2
n = C

{ s log(d/s)
n + s

(
1
n

) 2α
2α+1

}
as a suitable choice.

5 Discussion

In this paper, we have studied estimation in the class of sparse additive models defined by uni-
variate reproducing kernel Hilbert spaces. In conjunction, our two main results provide a precise
characterization of the minimax-optimal rates for estimating f∗ in the L2(P)-norm for various ker-
nel classes. These classes include the case of finite-rank kernels (with logarithmic metric entropy),
as well as kernels with polynomially decaying eigenvalues (and hence polynomial metric entropy).
In order to establish achievable rates, we analyzed a simple M -estimator based on regularizing the
least-squares loss with two kinds of `1-based norms, one defined by the univariate Hilbert norm
and the other by the univariate empirical norm. On the other hand, we obtained our lower bounds
by a combination of approximation-theoretic and information-theoretic techniques. An interesting
feature of the minimax rates derived here is that they exhibit a natural decoupling into the complex-
ities associated with two sub-problems. The first term corresponds to the difficulty of performing
subset selection—that is, determining which s out of d co-ordinate functions are active. The second
term corresponds to the difficulty of estimating a sum of s univariate functions, assuming that the
correct co-ordinates are known.

There are a number of ways in which this work could be extended. For instance, although
our analysis was based on assuming independence of the covariates xj , j = 1, 2, . . . d, it would be
interesting to investigate the case when the random variables are endowed with some correlation
structure. One might expect some changes in the optimal rates, particularly if many of the variables
are strongly dependent. This work considered only the function class consisting of sums of univariate
functions; a natural extension would be to consider nested non-parametric classes formed of sums
over hierarchies of subsets of variables. Analysis in this case would require dealing with dependencies
between the different functions.
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A Proof of Lemma 1

Define the function

R̂n,j(r) : = Ew
[

sup
‖gj‖n≤r
‖gj‖H≤1

1

n

n∑
i=1

wig(xij)
]
,

and let ν̂n,j > 0 denote the smallest positive solution of the inequality 256 r2 ≥ R̂n,j(r). The

function R̂n,j(r) defines the local Gaussian complexity of the kernel class in co-ordinate j. Using
the techniques of Mendelson [24], it follows that there is an universal constant c0 > 0 such that

R̂n,j(r) ≤
c0√
n

[ n∑
j=1

min{µ̂j , r2}
]1/2

, (41)

where {µ̂`}n`=1 are the eigenvalues of the empirical kernel matrix. (The results of Mendelson are
stated for the population Rademacher complexity, but a similar argument establishes the bound (41)
for the empirical Gaussian complexity.)

Recall that the critical univariate rate νn is defined in terms of the closely related function

Rn(r) : = 1√
n

[∑∞
`=1 min{r2, µ`}

]1/2
, where {µ`}∞`=1 are the eigenvalues of the (population) kernel

operator. Define the event

D(γn) : =
{
ν̂n,j ≤ γn, for all j = 1, 2, . . . , d

}
, (42)

where we recall that γn : = κ1 max
{
νn,
√

log d
n

}
. It is a consequence of Lemma 6 in Appendix F that

P[D(γn)] ≥ 1−c1 exp(−c2nγ
2
n). Consequently, we proceed by conditioning on this event throughout

the remainder of the proof.

In the remainder of the proof, our goal is to prove that

∣∣ 1
n

n∑
i=1

wifj(xij)
∣∣ ≤ C {γ2

n ‖fj‖H + γn ‖fj‖n
}

for all fj ∈ H (43)

with probability greater than 1 − c1 exp(−c2nγ
2
n). By combining this result with our choice of γn

and the union bound, the claimed bound on P[T (γn)] then follows.

If fj = 0, then the claim (43) is trivial. Otherwise, we write

1

n

n∑
i=1

wifj(xij) = ‖fj‖H
1

n

n∑
i=1

wigj(xij), where gj : = fj/‖fj‖H.
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Noting that ‖gj‖H = 1, we are led to study the random variable

Zn,j(w; rj) : = sup
‖gj‖n≤rj
‖gj‖H≤1

1

n

n∑
i=1

wigj(xij),

a quantity that satisfies R̂n,j(rj) = Ew[Zn,j(w; rj)] by construction.
Our next step is to establish that for any fixed radius rj > 0, we have tail bound

P
[
Zn,j(w; rj) ≥ C

{
γ2
n + γn rj

}]
≤ c1 exp

{
− c2nγ

2
n

(
1 + (γn/rj)

2
)}
. (44)

We then use a peeling argument to extend the bound to a uniform one over the radius rj .

Establishing the tail bound (44): Viewing Zn,j as a function of w, we first bound its Lipschitz
constant. For any two vectors w,w′ ∈ Rn, we have

|Zn,j(w; rj)− Zn,j(w′; rj)| ≤
1

n
sup

‖gj‖n≤rj
|
n∑
i=1

(wi − w′i)gj(xij)
∣∣

≤ rj√
n
‖w − w′‖2

Therefore, by concentration of measure for Lipschitz functions of Gaussian variables [19], we have

P
[
Zn,j(w; rj) ≥ E[Zn,j(w; rj)] + t

]
≤ 2 exp

(
− n t2

2r2
j

)
. (45)

Setting t = γn(rj + γn) yields an upper bound of the form of right-hand side of equation (44).
In order to complete the proof of the bound (44), we need to show

E[Zn,j(w; rj)] ≤ C
{
γ2
n + γn rj

}
for all rj > 0.

We do so by splitting into two cases.

Case 1: If rj ≤ ν̂n,j , then we have R̂n,j(rj) ≤ R̂n,j(ν̂n,j) ≤ 256 ν̂2
n,j where the second inequality

follows from our choice of ν̂n,j .

Case 2: Otherwise, if rj > ν̂n,j , we have

R̂n,j(r) =
r

ν̂n,j
Ew
[

sup
‖gj‖n≤ν̂n,j
‖gj‖H≤

ν̂n,j
r

1

n

n∑
i=1

wig(xij)
]

≤ r

ν̂n,j
R̂n,j(ν̂n,j)

≤ 256 rν̂n,j ,

where the final line uses the fact that R̂n,j(ν̂n,j) ≤ 256 ν̂2
n,j . Combining yields the bound

R̂n,j(r) ≤ C
{
ν̂2
n,j + r ν̂n,j

}
.

Under the event D(γn) previously defined (42), we have ν̂n,j ≤ γn, so that the proof of the claim (44)
is complete.
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Peeling argument: We now use the bound (44) to prove the bound (43), in particular via
a “peeling” operation over all choices of rj = ‖fj‖n/‖fj‖H. We first claim that it suffices to
consider r ∈ (0, 1]. In order to show that r ≤ 1, it is equivalent to show that ‖gj‖n ≤ 1 for any
gj ∈ BH(1). Recall that we have assumed that ‖gj‖∞ ≤ 1 for all gj ∈ BH(1). Consequently,
whenever gj ∈ BH(1), we have ‖gj‖2n = 1

n

∑n
i=1 g

2
j (xij) ≤ 1, as required.

Now define the event

Tj(γn) : =

{
∃fj ∈ BH(1) |

∣∣ 1
n

n∑
i=1

wifj(xij)
∣∣ > 2C ‖fj‖H

{
γ2
n + γn

‖fj‖n
‖fj‖H

}}
. (46)

Note that we have the decomposition Tj(γn) = T Aj (γn) ∪ T Bj (γn), where

T Aj (γn) : = Tj(γn) ∩
{ ‖fj‖n
‖fj‖H

≤ γn
}
, and

T Bj (γn) : = Tj(γn) ∩
{ ‖fj‖n
‖fj‖H

∈ (γn, 1]
}
.

It remains to obtain upper bounds on the probabilities of these two events.

Case A: For m = 1, 2, 3, . . ., define the sets

Sm : =
{ γn

2m
≤ ‖fj‖n
‖fj‖H

≤ γn
2m−1

}
.

If the event T Aj (γn) occurs, then it must occur for a function fj belonging to some Sm, so that we
have a function fj such that ‖fj‖n/‖fj‖H ≤ γn

2m−1 = : rm, and

∣∣ 1
n

n∑
i=1

wifj(xij)
∣∣ > 2C ‖fj‖H

{
γ2
n + γn

‖fj‖n
‖fj‖H

}
≥ 2C ‖fj‖H

{
γ2
n +

γn
2m
}

≥ C ‖fj‖H
{
γ2
n + rm

}
,

which implies that Zn(w; rm) ≥ C
{
γ2
n + rm

}
. Consequently, by union bound and the tail

bound (44), we have

P[T Aj (γn)] ≤ c1

∞∑
m=1

exp
{
− c2nγ

2
n

(
1 + (γn/rm)2

)}
= c1

∞∑
m=1

exp
{
− c2nγ

2
n

(
1 + 22m−2

)}
≤ c′1 exp(−c2nγ

2
n).

Case B: In this case, we define the sets

Sm : =
{

2m−1γn ≤
‖fj‖n
‖fj‖H

≤ 2mγn
}

for m = 1, 2, . . . ,M,
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where M = 2 log2(1/γn) so that 2Mγn ≥ 1. By the same argument, we then have

P[T Bj (γn)] ≤M c1 exp(−c2nγ
2
n)

≤ c1 exp
(
− c2nγ

2
n + 2 log(1/γn)

)
≤ c′1 exp(−c2nγ

2
n),

by the condition nγ2
n = Ω(log(1/γn)).

B Proof of Lemma 2

Define the function

L̃(∆) : =
1

2n

n∑
i=1

(
wi −∆(xi)

)2
+ λn‖f∗ + ∆‖n,1 + ρn‖f∗ + ∆‖H,1

and note that by definition of our M -estimator, the error function ∆̂ : = f̂ − f∗ minimizes L̃. From
the inequality L̃(∆̂) ≤ L̃(0), we obtain

1

2
‖∆̂‖2n ≤

1

n

n∑
i=1

wi∆̂(xi) + λn

d∑
j=1

{
‖f∗j ‖n − ‖f∗j + ∆̂j‖n

}
+ ρn

d∑
j=1

{
‖f∗j ‖H − ‖f∗j + ∆̂j‖H

}
.

Now for any j ∈ Sc, we have

‖f∗j ‖n − ‖f∗j + ∆̂j‖n = −‖∆̂j‖n, and ‖f∗j ‖H − ‖f∗j + ∆̂j‖H = −‖∆̂j‖H.

On the other hand, for any j ∈ S, the triangle inequality yields

‖f∗j ‖n − ‖f∗j + ∆̂j‖n ≤ ‖∆̂j‖n,

with a similar inequality for the terms involving ‖ · ‖H. Since 1
2‖∆̂‖

2
n ≥ 0, we conclude that

0 ≤ 1

n

n∑
i=1

wi∆̂(xi) + λn
{
‖∆̂S‖n,1 − ‖∆̂Sc‖n,1

}
+ ρn

{
‖∆̂S‖H,1 − ‖∆̂Sc‖H,1

}
. (47)

Recalling our conditioning on the event T (γn), we have the upper bound

∣∣ 1
n

n∑
i=1

wi∆̂(xi)| ≤ 2κ3

{
γn‖∆̂‖n,1 + γ2

n‖∆̂‖H,1
}
.

Combining with the inequality (47) yields

0 ≤ 2κ3

{
γn‖∆̂‖n,1 + γ2

n‖∆̂‖H,1
}

+ λn
{
‖∆̂S‖n,1 − ‖∆̂Sc‖n,1

}
+ ρn

{
‖∆̂S‖H,1 − ‖∆̂Sc‖H,1

}
≤ λn

2
‖∆̂‖n,1 +

ρn
2
‖∆̂‖H,1 + λn

{
‖∆̂S‖n,1 − ‖∆̂Sc‖n,1

}
+ ρn

{
‖∆̂S‖H,1 − ‖∆̂Sc‖H,1

}
,

where we have recalled our choices of (λn, ρn). Finally, re-arranging terms yields the claim (29).
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C Proof of Lemma 3

Lemma 3 is a straightforward consequence of Lemma 7 from Appendix F. In particular, applying
the latter lemma with t = γn/2 ≥ εn yields

‖fj‖n ≤ ‖fj‖2 +
γn
2

for all fj ∈ BH(1) and ‖fj‖2 ≤ γn/2

with probability greater than 1−c1 exp(−c2nγ
2
n). On the other hand, if ‖fj‖2 > γn/2, then the sand-

wich relation (66) implies that ‖fj‖n ≤ 2‖fj‖2 with probability greater than 1− c1 exp(−c2nγ
2
n).

Defining the rescaled functions gj = 2fj ∈ BH(2), we have established that

P[Acj(γn)] ≤ c1 exp(−c2nγ
2
n).

Recalling that A(γn) = ∩dj=1Aj(γn), we can combine this upper bound with union bound, thereby
obtaining

P[Ac(γn)] ≤ d c1 exp(−c2nγ
2
n) ≤ c1 exp(−c′2nγ2

n),

where we have used the fact that γn = Ω(
√

log d
n ).

D Proof of Lemma 4

Define the alternative event

B′(δn) : =
{
{‖h‖2n ≥ δ2

n/4 for all h ∈ 2F with ‖h‖2 = δn

}
.

We claim that it suffices to show that B′(δn) holds with high probability. Indeed, given an arbitrary
g ∈ 2F = {f + f ′ | f, f ′ ∈ F} with ‖g‖2 ≥ δn, we can define h = δn

‖g‖2 g. Since g ∈ 2F and 2F is

star-shaped, we have h ∈ 2F , and also ‖h‖2 = δn by construction. Therefore, if B′(δn) holds, we
have ‖h‖2n ≥ δ2

n/4, which implies that

δ2
n

‖g‖22
‖g‖2n ≥

δ2
n

4
,

or equivalently that ‖g‖2n ≥ ‖g‖22/4, showing that B(δn) holds.
Accordingly, the remainder of the proof is devoted to showing that B′(δn) holds with high

probability. For a truncation level τ > 0 to be chosen, define the function

φτ (u) : =

{
u2 if |u| ≤ τ
τ2 otherwise.

(48)

By construction, φτ is continuous, Lipschitz with constant 2τ , and bounded by τ2. Since u2 ≥ φτ (u)
for all u ∈ R, we have

1

n

n∑
i=1

g2(xi) ≥
1

n

n∑
i=1

φτ (g(xi)). (49)

The remainder of the proof consists of the following steps:
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(1) First, we show that for all g ∈ 2F with ‖g‖2 = δn, we have

E[φτ (g(x))] ≥ 1

2
E[g2(x)] =

δ2
n

2
. (50)

(2) Next we prove that

sup
g∈F
‖g‖2≤δn

∣∣ 1
n

n∑
i=1

φτ (g(xi))− E[φτ (g(x))]
∣∣ ≤ δ2

n

4
(51)

with high probability.

Putting together the pieces, we conclude that for any g ∈ F with ‖g‖2 = δn, we have

1

n

n∑
i=1

φτ (g(xi)) ≥
δ2
n

2
− δ2

n

4
=

δ2
n

4

with high probability (to be specified later). Combined with the lower bound (49), this shows that
event B′(δn) holds with high probability, thereby completing the proof. It remains to establish the
claims (50) and (51).

Establishing the lower bound (50): By the definition of φτ , we have

E
[
φτ (g(x))

]
≥ E

[
g2(x) I[|g(x)| < τ ]

]
= E[g2(x)]− E

[
g2(x) I[|g(x)| ≥ τ ]

]
= δ2

n − E
[
g2(x) I[|g(x)| ≥ τ ]

]
.

Consequently, it suffices to show that, with appropriate choice of the truncation level, we have
E
[
g2(x) I[|g(x)| ≥ τ ]

]
≤ δ2

n/2. By the Cauchy-Schwarz inequality, we have

(
E
[
g2(x) I[|g(x)| ≥ τ ]

])2 ≤ E[g4(x)] E
[
I2[|g(x)| ≥ τ ]

]
= E[g4(x)] P[|g(x)|2 ≥ τ2]

≤ E[g4(x)]
δ2
n

τ2
, (52)

where the final step uses Markov’s inequality, and the fact E[g2(x)] = δ2
n. It remains to bound the

fourth moment. Any g ∈ 2F can be written as a sum g =
∑

j∈U gj of univariate functions over a
subset U of cardinality at most 2s, so that

E[g4(x)] = E
[(∑

j∈U
gj(xj)

)4
] =

∑
j∈U

E[g4
j (xj)] +

(
4

2

)∑
j∈U

∑
k∈U\{j}

E[g2
j (xj)] E[g2

k(xk)],
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where we have used the binomial expansion, the independence of xj from co-ordinate to co-ordinate,
and the fact that E[gj(xj)] = 0. Re-arranging the second sum yields

E[g4(x)] =
∑
j∈U

E[g4
j (xj)] +

(
4

2

)∑
j∈U

E[g2
j (xj)]

∑
k∈U\{j}

E[g2
k(xk)]

≤
∑
j∈U

E[g4
j (xj)] +

(
4

2

){∑
j∈U

E[g2
j (xj)]

}
E[g2(x)]

=
∑
j∈U

E[g4
j (xj)] +

(
4

2

)
δ4
n.

For a function g =
∑

j∈U gj ∈ 2F , each univariate function satisfies ‖gj‖∞ ≤ 2, so that we have

E[g4
j (xj)] ≤ 4E[g2

j (xj)], and hence
∑

j∈U E[g4
j (xj)] ≤ 4

∑
j∈U E[g2

j (xj)] = 4δ2
n. Overall, we have

shown that

E[g4(x)] ≤ 4δ2
n + 6δ4

n ≤ 10δ2
n.

Substituting back into the inequality (52), we find that

E
[
g2(x) I[|g(x)| ≥ τ ]

]
≤
√

10δ2
n

√
δ2
n

τ2
≤
√

10 δ2
n

τ
,

so that setting τ = 2
√

10 is sufficient to prove the claim (50).

Establishing the bound (51): For a fixed subset U , recall the definition (4) of the function
class H(U). Note that the function class 2F can be written as

⋃
|U |=2sH(U), where the co-ordinate

functions gj satisfy the bound ‖gj‖∞ ≤ 2. Accordingly, we define the random variable

Zn(U) : = sup
g∈H(U)
‖g‖2≤δn

∣∣ 1
n

n∑
i=1

φτ (g(xi))− E[φτ (g(x))]
∣∣, (53)

and claim that it suffices to show that

P
[
Zn(U) ≥ 1

16
(δ2
n + t δn + t2)

]
≤ c1 exp(−c2nt

2) for all t > 0. (54)

Indeed, assuming that this bound holds, then by applying the union bound over all
(
d
2s

)
subsets of

cardinality at most, we have

P[ sup
g∈2F
‖g‖2≤δn

∣∣ 1
n

n∑
i=1

φτ (g(xi))− E[φτ (g(x))]
∣∣ ≥ 1

16
(δ2
n + t δn + t2)

]
≤ c1 exp

{
− c2nt

2 + log

(
d

2s

)}
.

Setting t = δn and noting that our choice of δn ensures that c2
2 nδ

2
n ≥ log

(
d
2s

)
yields the claim (51).

Accordingly, we now prove the bound (54). The functions φτ (g(x)) are uniformly bounded by
τ2. Moreover, since φτ (u) = min{u2, τ2}, we have

E[φ2
τ (g(x))] ≤ τ2 E[φτ (g(x))] ≤ τ2E[g2(x)] ≤ τ2δ2

n,
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where the final inequality uses the fact that E[g2(x)] ≤ δ2
n. Consequently, we have shown that

var(φτ (g(x))) ≤ E[φ2
τ (g(x))] ≤ τ2δ2

n. We now apply Corollary 7.9 in Ledoux [19] with ε = 1,
r = c2nt

2 and σ2 = nτ2δ2
n to conclude that

P
[
Zn(U) ≥ 2E[Zn(U)] +

1

16
tδn +

1

16
t2
)]
≤ c1 exp(−c2nt

2) (55)

for some universal constants (c1, c2). (In this step, we can choose c2 small enough so as to obtain
the constants 1/16.)

Based on the bound (55), our remaining task is to show that E[Zn(U)] ≤ 1
32δ

2
n. By a standard

symmetrization argument, we have

E[Zn(U)] ≤ 2Ex,σ
[

sup
g∈H(U)
‖g‖2≤δn

∣∣ 1
n

n∑
i=1

σiφτ (g(xi))
∣∣],

where {σi}ni=1 is an i.i.d. sequence of Rademacher variables. Since the function φτ is Lipschitz with
constant 2τ , the Ledoux-Talagrand contraction inequality (p. 112, [20]) implies that

E[Zn(U)] ≤ 4τ Ex,σ
[

sup
g∈H(U)
‖g‖2≤δn

∣∣ 1
n

n∑
i=1

σig(xi)
∣∣]

Note that H(U) is subset of an RKHS with norm ‖g‖2H(U) =
∑

j∈U ‖gj‖2H. Since ‖gj‖H ≤ 2 for

each gj , we have ‖g‖H(U) ≤ 4
√
s for all g ∈ H(U). Consequently, we have

E[Zn(U)] ≤ 4τ Ex,σ
[

sup
‖g‖H(U)≤4

√
s

‖g‖2≤δn

∣∣ 1
n

n∑
i=1

σig(xi)
∣∣].

Now defining the rescaled functions h = g/
√
s, we have

E[Zn(U)] ≤ 4τ
√
s Ex,σ

[ 1

n
sup

‖h‖H(U)≤4

‖h‖2≤ δn√
s

1

n

n∑
i=1

σih(xi)
]

≤ 32τ
√
s

1√
n

[ ∞∑
`=1

min
{δ2

n

s
, α`
}]1/2

︸ ︷︷ ︸
Tn(δn)

where α1 ≥ α2 ≥ · · · are the eigenvalues of the kernel associated with the Hilbert space H(U).
This last inequality makes uses of standard upper bounds on kernel Rademacher complexities (e.g.,
see Mendelson [24]).

Now since H(U) is a sum of at most 2s copies of the same univariate Hilbert space H, the
eigenvalues {α`}∞`=1 correspond to at most 2s copies of the eigenvalues {µ`}∞`=1 of H. Consequently,
by factoring out these 2s terms, we obtain

Tn(δn) ≤ 64τ s
1√
n

[ ∞∑
`=1

min{δ
2
n

s
, µ`}

]1/2
.
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Now, as long as δ2
n/s ≥ ν2

n, where νn is the critical rate (12) for the univariate kernel, we are
guaranteed that

1√
n

[ ∞∑
`=1

min{δ
2
n

s
, µ`}

]1/2 ≤ 1

κ0

δ2
n

s
,

and hence E[Zn(U)] ≤ 64 τ s
κ0

δ2n
s . Choosing τ = 2

√
10 and κ0 = 642

√
10, we conclude that

E[Zn(U)] ≤ δ2n
32 , as required.

E Proof of Lemma 5

Proof of part (a): Let N = M( δ√
s
;BH(1), ‖ · ‖2) − 1, and define I = {0, 1, . . . , N}. Using

‖u‖0 =
∑d

j=1 I[uj 6= 0] to denote the number of non-zero components in a vector, consider the set

S : =
{
u ∈ Id | ‖u‖0 = s

}
. (56)

Note that this set has cardinality |S| =
(
d
s

)
N s, since any element is defined by first choosing s

co-ordinates are non-zero, and then for each co-ordinate, choosing non-zero entry from a total of
N possible symbols.

For each j = 1, . . . , d, let {0, f1
j , f

2
j , . . . , f

N
j } be a δ/

√
s-packing of BH(1). Based on these

packings of the univariate function classes, we can use S to index a collection of functions contained
inside F . In particular, any u ∈ S uniquely defines a function gu =

∑d
j=1 g

uj
j ∈ F , with elements

g
uj
j =

{
f
uj
j if uj 6= 0

0 otherwise.
(57)

Since ‖u‖0 = s, we are guaranteed that at most s co-ordinates of g are non-zero, so that g ∈ F .
Now consider two functions gu and hv contained within the class {gu, u ∈ S}. By definition,

we have

‖gu − hv‖22 =

d∑
j=1

‖fujj − f
vj
j ‖

2
2 ≥

δ2

s

d∑
j=1

I[uj 6= vj ], (58)

Consequently, it suffices to establish the existence of a “large” subset A ⊂ S such that the
Hamming metric ρH(u, v) : =

∑d
j=1 I[uj 6= vj ] is at least s/2 for all pairs u, v ∈ A, in which case we

are guaranteed that ‖g − h‖22 ≥ δ2. For any u ∈ S, we observe that∣∣∣∣{v ∈ S | ρH(u, v) ≤ s

2

}∣∣∣∣ ≤ (ds
2

)
(N + 1)

s
2 .

This bound follows because we simply need to choose a subset of size s/2 where u and v agree, and
the remaining s/2 co-ordinates can be chosen arbitrarily in (N + 1)

s
2 ways. For a given set A, we

write ρH(u,A) ≤ s
2 if there exists some v ∈ A such that ρH(u, v) ≤ s

2 . Using this notation, we have∣∣∣∣{u ∈ S | ρH(u,A) ≤ s

2

}∣∣∣∣ ≤ |A| (ds
2

)
(N + 1)

s
2

(a)
< |S|,
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where inequality (a) follows as long as

|A| ≤ N∗ : =
1

2

(
d
s

)(
d
s
2

) N s

(N + 1)s/2
.

Thus, as long as |A| ≤ N∗, there must exist some element u ∈ S such that ρH(u,A) > s
2 , in which

case we can form the augmented set A∪ {u}. Iterating this procedure, we can form a set with N∗

elements such that ρH(u, v) ≥ s
2 for all u, v ∈ A.

Finally, we lower bound N∗. We have

N∗
(i)

≥ 1

2

(d− s
s/2

) s
2

(N)s

(N + 1)s/2

=
1

2

(d− s
s/2

) s
2 N s/2

( N

N + 1

)s/2
≥ 1

2

(d− s
s/2

) s
2 N s/2,

where inequality (i) follows by elementary combinatorics (see Lemma 5 in the paper [27] for details).
We conclude that for s ≤ d/4, we have

logN∗ = Ω
(
s log

d

s
+ s logM(

δ√
s

;BH(1), ‖ · ‖2)
)
,

thereby completing the proof of Lemma 5(a).

Proof of part (b): In order to prove part (b), we instead let N = M(1
2 ;BH(1), ‖ · ‖2) − 1, and

then follow the same steps. Since logN = Ω(m), we have the modified lower bound

logN∗ = Ω
(
s log

d

s
+ sm

)
,

Moreover, instead of the lower bound (58), we have

‖gu − hv‖22 =
d∑
j=1

‖fujj − f
vj
j ‖

2
2 ≥

1

4

d∑
j=1

I[uj 6= vj ] ≥
s

8
, (59)

using our previous result on the Hamming separation. Furthermore, since ‖fj‖2 ≤ ‖fj‖H for any
univariate function, we have the upper bound

‖gu − hv‖22 =
d∑
j=1

‖fujj − f
vj
j ‖

2
2 ≤

d∑
j=1

‖fujj − f
vj
j ‖

2
H.

By the definition (56) of S, at most 2s of the terms f
uj
j − f

vj
j can be non-zero. Moreover, by

construction we have ‖fujj − f
vj
j ‖H ≤ 2, and hence

‖gu − hv‖22 ≤ 8s.

Finally, by rescaling the functions by
√

8 δ/
√
s, we obtain a class ofN∗ rescaled functions {g̃u, u ∈ I}

such that
‖g̃u − h̃v‖22 ≥ δ2, and ‖g̃u − h̃v‖22 ≤ 64δ2,

as claimed.
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F Results on kernel classes

In this appendix, we collect some basic results about reproducing kernel Hilbert spaces, useful in
our analysis. Let H be an RKHS of functions f : X → R. Let {σi}ni=1 be an i.i.d. sequence of
Rademacher variables, and let {xi}ni=1 be an i.i.d. sequence of variables from X , drawn according
to some distribution Q. For each t > 0, we define the local Rademacher complexities

Q̂n(t) : = Eσ
[

sup
‖g‖n≤t
‖g‖H≤1

1

n

n∑
i=1

σig(xi)
]
, and Qn(t) : = Ex,σ

[
sup
‖g‖2≤t
‖g‖H≤1

1

n

n∑
i=1

σig(xi)
]

(60)

By results due to Mendelson [24], there are universal constants c` ≤ cu such that for all t2 ≥ 1/n,
we have

c`√
n

[ ∞∑
j=1

min{t2, µj}
]1/2 ≤ Qn(t) ≤ cu√

n

[ ∞∑
j=1

min{t2, µj}
]1/2

. (61)

Conditionally on {xi}ni=1, the same bounds hold for Q̂n(t) with the population eigenvalues {µ`}∞`=1

replaced by the eigenvalues {µ̂`}n`=1 of the kernel matrix defined by the n samples. We let εn and
ε̂n denote (respectively) the smallest solutions (of size at least 1/

√
n) to the inequalities

Qn(εn) ≤ ε2n
256

, and Q̂n(ε̂n) ≤ 256ε̂2n. (62)

These two quantities correspond to the critical rates derived from the population and empirical
eigenvalues respectively. (Our scaling by 256 is for later theoretical convenience.)

Our first result relates the critical rates based on the population and empirical eigenvalues. Recall

that γn : = κ1 max
{
νn,
√

log d
n

}
.

Lemma 6. We have

P
[
ε̂n ≤ γn

]
≥ 1− c1 exp(−c2γ

2
n). (63)

This result is exploited at the start of Appendix A. In particular, combined with union bound, it
implies that the event D(γn) holds with high probability, as claimed.

Our second result provides uniform control on the difference between the empirical ‖ · ‖n and
population ‖ · ‖2 norms over H. In particular, for a radius t ≥ εn, we define the event

E(t) : =
{

sup
g∈BH(1)
‖g‖2≤t

∣∣‖g‖n − ‖g‖2∣∣ ≥ t

2

}
. (64)

Lemma 7. Suppose that ‖g‖∞ ≤ 1 for all g ∈ BH(1). Then there exists universal constants (c1, c2)
such that for any t ≥ εn,

P
[
E(t)

]
≤ c1 exp(−c2nt

2). (65)

Moreover, for any t ≥ εn, we have

‖g‖2
2
≤ ‖g‖n ≤

3

2
‖g‖2 for all g ∈ BH(1) with ‖g‖2 ≥ t (66)

with probability at least 1− c1 exp(−c2nt
2).
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F.1 Proof of Lemma 7

Our proof is based on the random variable

Yn(t) : = sup
g∈BH(1), ‖g‖2≤t

∣∣‖g‖2n − ‖g‖22∣∣,
If the event E(t) occurs, then there exists some g ∈ BH(1) such that |‖g‖n − ‖g‖2| ≥ t

2 , whence

∣∣‖g‖2n − ‖g‖22∣∣ =
∣∣‖g‖n − ‖g‖2∣∣ (‖g‖n + ‖g‖2

)
≥ t2

4
.

Therefore, it suffices to establish the upper bound

P
[
Yn(t) ≥ t2

4

]
≤ c1 exp(−c2nt

2).

We first bound deviations above the expectation using concentration theorems for empirical pro-
cesses [19]. The supremum of the variances is upper bounded by

γ2(t) : = sup
g∈BH(1), ‖g‖2≤t

1

n

n∑
i=1

var(g2(xi)− ‖g‖22) = sup
g∈BH(1), ‖g‖2≤t

E
[(
g2(x)− ‖g‖22

)2]
,

using the i.i.d. nature of the samples {xi}ni=1. Moreover, since the functions are uniformly bounded
by 1, we have

γ2(t) ≤ 32E
[(
g(x) + ‖g‖2

)2] ≤ 64t2, (67)

where the final inequality uses the fact that E[g2(x)] = ‖g‖22 ≤ t2. Consequently, applying Corollary
7.9 in Ledoux [19] with ε = 1, r = nt2 and σ2 = 64t2, we conclude that there are universal constants
such that

P
[
Yn(t) ≥ 2E[Yn(t)] +

t2

20

]
≤ c1 exp(−c2nt

2). (68)

We now upper bound the mean. By a standard symmetrization argument, we have

E[Yn(t)] ≤ 2 Ex,σ
[

sup
g∈BH(1),‖g‖2≤t

∣∣ 1
n

n∑
i=1

σi g
2(Xi)

∣∣],
where {σi}ni=1 are i.i.d. Rademacher variables. Since ‖g‖∞ ≤ 1 for all g ∈ F , we may may apply
the Ledoux-Talagrand contraction theorem ([20], p. 112) to obtain that

E[Yn(t)] ≤ 8 Ex,σ
[

sup
g∈BH(1),‖g‖2≤t

∣∣ 1
n

n∑
i=1

σig(xi)
∣∣] = 8Qn(t).

But by our choice (62) of εn and since t ≥ εn, we have have Qn(t) ≤ t2

256 . Combined with the
bound (68), we conclude that

Yn(t) ≤ 8
t2

256
+
t2

20
≤ t2

4
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with probability at least 1− c1 exp(−c2nt
2), as claimed.

Finally, let us prove the sandwich relation (66). For any g ∈ BH(1) with ‖g‖2 ≥ t ≥ εn, we can
define the function h : = t

‖g‖2 g. Note that h ∈ BH(1) and ‖h‖2 = t, so that when the bound (65)

holds, we have ‖h‖2 − t
2 ≤ ‖h‖n ≤ ‖h‖2 + t

2 or equivalently, that

t

2
≤ t

‖g‖2
‖g‖n ≤

3t

2
,

with probability at least 1− c1 exp(−c2nt
2), which establishes the claim (66).

F.2 Proof of Lemma 6

For any t > 0, define the two random variables

Ẑn(t) : = sup
‖g‖n≤t
‖g‖H≤1

1

n

n∑
i=1

σig(xi), and Zn(t) : = sup
‖g‖2≤t
‖g‖H≤1

1

n

n∑
i=1

σig(xi),

and observe that Eσ [Ẑn(t)] = Q̂n(t) and Ex,σ [Zn(t)] = Qn(t).
For any function with ‖g‖n ≤ t, we have

∑n
i=1 varσ(σig(xi)) = n‖g‖2n ≤ nt2. Consequently,

applying the lower bound in Corollary 7.9 of Ledoux [19] with r = c2nt
2 and ε = 1/2, we obtain

P
[
Ẑn(t) ≤ 1

2
Q̂n(t)− t2

]
≤ c1 exp(−c2nt

2). (69)

Similarly, for any function with ‖g‖2 ≤ t, we have
∑n

i=1 varσ,x(σig(xi)) = n‖g‖22 ≤ nt2. Conse-
quently, applying the upper bound in Corollary 7.9 of Ledoux [19] with r = c2nt

2 and ε = 2, we
obtain

P
[
Zn(t) ≥ 2Qn(t) + t2

]
≤ c1 exp(−c2nt

2). (70)

Now suppose that ‖g‖2 > t ≥ εn. Then conditioned on the sandwich relation (66), we are
guaranteed that ‖g‖n > t

2 . Taking the contrapositive, we conclude that ‖g‖n ≤ t
2 implies ‖g‖2 ≤ t,

and hence that

Ẑn(t/2) ≤ Zn(t) for all t ≥ εn, (71)

under the stated conditioning.
For any t ≥ εn, the inequalities (69), (70) and (71) hold with probability at least 1− c1 exp(−c2nt

2).
Conditioning on these inequalities, we can set t = γn > εn, and thereby obtain

Q̂n(γn)
(a)

≤ 2Ẑn(γn) + 2γ2
n

(b)

≤ 2Zn(2γn) + 2γ2
n

(c)

≤ 4Qn(2γn) + 8γ2
n

(d)

≤ 128γ2
n,

where inequality (a) follows from the bound (69), inequality (b) follows from the bound (71),
inequality (c) follows from the bound (70), and inequality (d) follows since 2γn > εn and the
definition of εn. By the definition of ε̂n as the minimal t such that Q̂n(t) ≤ 256t2, we conclude that
ε̂n ≤ γn, as claimed.
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